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INTRODUCTION 

To make any r e a l  progress i n  t h e  a b i l i t y  t o  pred ic t  and control  t h e  l i q u i f a c t i o n  of 
coal  by hydrogenation it is  necessary t o  know what chemical react ions a r e  occurring. 
Modern preparat ive and a n a l y t i c a l  techniques such as e lu t ion  chromatography, m a s s  
spectroscopy and proton nmr have made t h e  task of character iz ing t h e  products of 
l iquefac t ion  react ions much e a s i e r  than h i t h e r t o ,  bu t  t h e  task of  charac te r iz ing  t h e  
coal  before  reac t ion  remains almost as i n t r a c t i b l e  as ever, because these  new 
methods depend on t h e  ana lys i s  samples being i n  t h e  l i q u i d  form (or i n  the  case of 
m a s s  spectroscopy, able  t o  be completely vaporized). 

This i s  not a new problem, of course. 
niques have been suggested as tools  f o r  deducing coal s t ruc ture ,  e .g .  oxidation, 
hydrogenation, a l k a l i n e  hydrolysis ,  pyrolysis  and ex t rac t ion  with powerful solvents  
( e i t h e r  alone or i n  conjunction with o t h e r  methods such as  thermal pre-treatment. 
use of  u l t rasonics ,  e tc . )  . These s u f f e r  from one of two disadvantages: with the  
r e l a t i v e l y  mild physical methods i n s u f f i c i e n t  coa l  is got i n t o  s o l u t i o n  t o  be useful  
( l e s s  than 20% is t y p i c a l ) ;  but with chemical methods, including pyro lys i s ,  t h e  
treatment is so harsh t h a t  i n t e r p r e t a t i o n  of the  s t r u c t u r e  of t h e  o r i g i n a l  coal  i n  
terms o f  t h a t  of t h e  products i s  of dubious v a l i d i t y .  
a ted temperatures, as i n  pyrolysis  or other  thermal treatments, i s  t o  be, avoided, as 
f r e e  rad ica ls  formed by cleaving fragments o f f  t h e  main body of  t h e  coa l  molecule 
may polymerize t o  form s t r u c t u r e s  which were not  present  in  t h e  o r i g i n a l  coal .  

Over t h e  years  many s o l u b i l i z a t i o n  tech- 

In  p a r t i c u l a r ,  use of e lev-  

I f  it is  accepted t h a t  coal cannot be got  i n t o  so lu t ion  without a l t e r i n g  i t s  s t r u c -  
t u r e  t o  some exten t ,  w e  should look f o r  methods i n  which these changes are  not  large 
enough t o  prohib i t  the  drawing of adequate deductions about t h e  s t r u c t u r e  of the  
o r i g i n a l  coal ,  while a t  t h e  same time present ing the  reac ted  coal i n  a form s u i t a b l e  
for s t r u c t u r a l  examination. This would requi re  a t  l e a s t  80% of  the coal  t o  be 
so lubi l ized ,  with t h e  so luble  mater ia l  low enough i n  molecular weight t o  ensure t h a t  
it i n  turn  i s  soluble  i n  mild organic so lvents ,  as required f o r  preparat ive tech- 
niques such as solvent  f rac t iona t ion  or chromatography. 

The methods w e  considered were Friedel-Craf ts  react ions of var ious kinds (a lkyla t ion  
and acylat ion)  and depolymerization of t h e  coal  by using it t o  a lkyla te  phenol, as 
f i r s t  proposed by Heredy and co-workers ( l ) ,  and extensively inves t iga ted  by them 
(1-5) and by Ouchi and co-workers (6-11). From the  recent  review o f  these methods 
by Larsen and Kuemerrle (12) i t  appears t h a t  molecular weights of t h e  coal  fragments 
produced a r e  higher  for a lkyla t ion  and acyla t ion  methods ( typ ica l ly  severa l  thou- 
sand, even a f t e r  allowing f o r  t h e  added acyl o r  a lkyl  groups) than f o r  the  mater ia l  
depolymerized i n  phenol ( l e s s  than a thousand). The only disadvantage of phenol 
depolymerization, compared with t h e  o ther  methods. was i t s  r e l a t i v e l y  weak act ion on 
very high rank coals  (< 9O%C, daf) .  This d id  not  concern us. as we were i n t e r e s t e d  
i n  examining brown coals from t h e  Latrobe Valley, Victor ia ,  Aus t ra l ia ,  with very low 
rank (65-70%C, daf). We therefore  chose t h i s  method, which had already been shown 
by Ouchi and Brooks (9) t o  be very e f f e c t i v e  f o r  t h i s  type of  coal .  We perhaps 
underestimated the  d i f f i c u l t i e s  t h a t  chemically combined phenol would cause us, as 
w i l l  be discussed l a t e r .  
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I n  our plan of a t tack  we first depolymerized the  
Imuta and Ouchi ( I l ) ,  then divided it i n t o  f i v e  f rac t ions  of  progressively increas-  
ing polar i ty ,  using so lvent  f rac t iona t ion ,  then analysed these f rac t ions  separately 
by elemental and func t iona l  group ana lys i s ,  and f u r t h e r  character ized the  f rac t ions  
by running inf ra red  and proton nmr s p e c t r a  on them. 
of combined phenol these d a t a  were put toge ther  t o  bui ld  up a composite p i c t u r e  of 
the  s t ruc ture  of t h e  o r i g i n a l  coal .  Heredy et  a l .  (5) have c a r r i e d  out a similar 
invest igat ion 0n.a s e r i e s  of coals of d i f f e r e n t  ranks. The present  work d i f f e r s  
from t h e i r s  i n  t h a t  it used a more powerful c a t a l y s t  f o r  t h e  phenolation, a more 
dec is ive  solvent  f r a c t i o n a t i o n  scheme, and inf ra red  as 'wel l  as nmr ana lys i s  f o r  
character iz ing t h e  f r a c t i o n s .  Also our coal was lower i n  rank than any o f  those 
they tes ted .  

coal using condi t ions suggested by 

Af ter  allowing f o r  t h e  e f f e c t s  

EXPERIMENTAL 

Coal used 

The coal tes ted  w a s  Morwell brown coa l  from Vic tor ia ,  Aus t ra l ia .  
on a dry basis i s  shown i n  Table 1. This coal contains  over 60% moisture as mined. 
I t  was ground wet t o  80% < 25 mesh, and used i n  t h e  wet s t a t e  (60% moisture). 

Phenolat ion reac t ion  

179 g of wet ground coal ,  75 g o f  p- toluenesulfonic  ac id  c a t a l y s t  and 1300 g of lab- 
oratory grade phenol w e r e  heated under ni t rogen,  and the  water w a s  removed from t h e  
coal by boi l ing a t  183OC ( t h e  b o i l i n g  point  of phenol i s  181.8°C). 
mixture w a s  refluxed a t  183OC f o r  4h, a f t e r  which t h e  phenol was removed by steam 
d i s t i l l a t i o n ,  leaving a s o l i d ,  black, t a r r y  mater ia l  of low melting poin t ,  which 
w a s  separated by decantat ion,  and ex t rac ted  by re f lux ing  f o r  2h with 1200 m l  of  
e thanolbenzene azeotrope (65% benzene, 35% e thanol ) .  The inso luble  mater ia l  w a s  
f i l t e r e d  of f  and dr ied i n  a vacuum oven f o r  12h a t  50°C and 16kPa pressure ( these 
conditions were l a t e r u s e d  t o  remove excess solvent  from a l l  the  f r a c t i o n s  - see 
Figure 1 below). 

Solvent f rac t iona t ion  

To f a c i l i t a t e  l a t e r  s t r u c t u r a l  ana lys i s  the  coal was separated i n t o  s t r u c t u r a l  types 
using t h e  solvent  f r a c t i o n a t i o n  scheme shown i n  Figure 1. 

Analysis 

Its composi.tion 

The remaining 

The or ig ina l  coal and t h e  various f r a c t i o n s  were analysed f o r  carbon, hydrogen and 
oxygen by t h e  C.S.I.R.O. Microanalyt ical  se rv ice .  Ash contents were determined i n  
a standard ashing furnace (13). Phenolic, carboxylic and carbonyl oxygen contents 
were determined by the  S t a t e  E l e c t r i c i t y  Commission of Vic tor ia ,  using methods de- 
veloped by them f o r  brown coals  (14). 

Inf ra red  spec t ra  of t h e  o r i g i n a l  coal and the  f r a c t i o n s  were measured on a Perkin 
Elmer 457 Grating I n f r a r e d  Spectrophotometer. 
were analysed as a t h i n  f i l m  or smear. S o l i d  samples (C, D and or ig ina l  coal) were 
analysed i n  KBr d i scs  containing 0.3% by mass of  sample. 
gr inding the KBr mixture for 2 minutes i n  a tungsten carbide TEMA grinding b a r r e l  , 
drying for  24h i n  a vacuum des icca tor  over phosphorus pentoxide, then pressing i n t o  
d i s c s  a t  10 tons force,  a t  room temperature but under vacuum. 
w a s  dominated by phenol a sample of  it w a s  f u r t h e r  separated by e lu t ion  chromato- 
graphy i n  an attempt t o  separa te  from it mater ia l  l e s s  dominated by phenol. 
Elut ion w a s  c a r r i e d  out  i n  a s i l i c a  column, using e l u t a n t s  i n  t h e  following order: 

Liquid samples ( f rac t ions  A and B) 

These were prepared by 

Because f r a c t i o n  A 
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hexane, chloroform, methanol. 

Proton nmr spec t ra  were recorded on a Varian HA 100 nmr spectrometer a t  room tem- 
perature ,  with te t ramethyls i lane (TMS) as i n t e r n a l  standard, with a sweep width of 
0 t o  1000 Hz from TMS. For f r a c t i o n  A a so lu t ion  of deuterated chloroform w a s  
used; f rac t ions  B and C were not  so luble  i n  CDC1, and pyridene -d, had t o  be used; 
f rac t ions  D and the whole coa l  were barely soluble  even i n  pyridene -d5, b u t  enough 
dissolved t o  ge t  spec t ra .  
whole mater ia l .  

These w i l l  not ,  of course, be representa t ive  of t h e  

RESULTS 

Yields and compositions 

Table 1 shows the y i e l d s  o f  t h e  f i v e  f rac t ions  per  100 g of o r i g i n a l  dry coal  and 
t h e i r  cbmpositions, including a breakdown of t h e  oxygen i n t o  carboxylic, phenol ic  
and other  oxygen. Note t h a t  p a r t  of  t h e  ash-forming mater ia l  has been removed by 
t h e  so lubi l iz ing  process (much of t h e  non-organic mater ia l  i n  Monrell coa l  is ion- 
exchangeable, and would have been replaced by hydrogen ions from t h e  p-toluene- 
su l fonic  acid; t h i s  w a s  confirmed by ash analysis :  e.g. ash from the o r i g i n a l  coal  
contained 50% SiO, and 10% MgQ, whereas f r a c t i o n  D ash contained 80% SiOz and only 
1% M@). 
must have been added. This cons is t s  of  combined phenol and unseparated so lvents ,  
as w i l l  be discussed later. This  d i l u t i o n  r e s u l t s  i n  the  f rac t ions  having higher  
carbon contents and lower oxygen contents than the o r i g i n a l  coal .  
content decreases from A t o  D as t h e  f rac t ions  become l e s s  a l i p h a t i c  and more aro- 
matic and polar .  

Infrared spec t ra  

The inf ra red  spec t ra  of t h e  f rac t ions  and t h e  or ig ina l  coal a r e  shown i n  Figure 2. 
The spectra  of the  e l u t e d  sub-fract ions of f rac t ion  A a r e  not  given here. 

A s  already mentioned f rac t ion  A i s  dominated by phenol; nevertheless  s t rong  aLi- 
phat ic  absorptions can be seen a t  2920. 2850, 1460 and 1380 cm-l. 
subfract ions A 1  (e luted by hexane, a very small par t  of A) and A2 (e luted by chloro- 
form, about a quar te r  o f  A) showed these a l i p h a t i c  absorptions very s t rongly.  The 
spectrum f o r  A 1  showed l i t t l e  e l s e ,  and t h i s  sub-fract ion is probably v i r t u a l l y  pure 
paraf f ins .  The spectrum f o r  A2  resembled the spec t ra  f o r  phenol e t h e r  and phenetole 
(C,H50C,H5). Absorption due t o  hydrogen - bonded hydrogen i s  negl ig ib le ,  showing 
t h a t  a l l  the  phenol i n  t h i s  sub-fract ion has been converted t o  e thers .  The spectrum 
for  subfract ion A3 (which c o n s t i t u t e s  about three quar te rs  of A) was dominated by 
phenol, but  some a l i p h a t i c  absorptions s t i l l  showed, and t h i s  sub-fract ion may w e l l  
consis t  of phenol bonded t o  small-coal fragments by methylene br idges.  
t ions  f o r  A, A2 and A3 a t  1250 cm a r e  probably due t o  e t h e r  oxygen. 

Fraction B i s  i n  many ways s imi la r  t o  f r a c t i o n  A ,  but with much weaker a l i p h a t i c  ab- 
s o q t i o n .  
cm , a weak aromatic absorption a t  3030 cm and many o ther  absorptions character-  
i s t i c  of phenol. 
cm-1, and e t h e r  oxygen absorption at 1250 cm l .  

Fractions C,  D and E have s p e c t r a  s i m i l a r  t o  those of the o r i g i n a l  coal. 
longer dominates, although t h e  hydrogen bonded -OH absorption a t  3400 cm-l is s t i l l  
s t rong.  
a t  1700 cm-I due t o  carboxylic oxygen, which was qui te  s t rong f o r  the  whole coal ,  is 
a l s o  qui te  pronounced f o r  f r a c t i o n s  C and D. 

A s  t h e  t o t a l  y i e l d  of f rac t ions  was 202 g/lOO g of o r i g i n a l  coal  102 g 

The hydrogen 

The s p e c t r a  of  

The absorp- 

I t  has a s t rong absorption due f o  hydrogen - bonded hydrogen a t  3400 

I t  a l s o  shows weak a l i p h a f i c  absorptions a t  2920, 1460 and 1380 

Phenol no 

The shoulder Aliphat ic  absorption is  weak i n  C and E and negl ig ib le  i n  D. 

( I t  w a s  absent from f r a c t i o n s  A and 
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B) . 
broad absorption from 1200-1000 cm present  i n  t h e  whole coal i s  a l s o  present i n  
f rac t ions  C and D although absent from A, B and E. Doubtless oxygen groups con- 
t r i b u t e  to  t h i s ,  but  we be l ieve  it i s  mainly due t o  s i l i c a ,  which is  a major con- 
s t i t u e n t  of  t h e  ash. 
s t rong  acids or by f loa t / s ink  separa t ions ,  

N m r  spec t ra  

Figure 3 shows nmr s p e c t r a  f o r  f r a c t i o n s  A, B, C and E .  

Table 2 shows the forms t h e  protons a re  present i n ,  as determined from these  spec t ra .  
The da ta  for f r a c t i o n  D and the  whole coa l  a r e  shown i n  brackets ,  as these samples 
were v i r t u a l l y  inso luble  i n  pyr id ine ,  and t h e  s p e c t r a  represent  only the  small s o l -  
uble portions. This t a b l e  demonstrates t h e  d i f f i c u l t i e s  the  coa l  chemist faces i n  
t r y i n g  to  use proton nmr on physical  so lu t ions  o f  coal: 
t h e  whole c o a l  shows no hydrogen-bonded protons despi te  t h e  evidence of t a b l e  1; it 
shows no t r ia romat ic  o r  methylene br idge protons, desp i te  the  presence of appreciable 
amounts of these i n  t h e  f rac t ions ;  on t h e  other  hand it shows f a r  more methylene a 
and methyl 13 than do t h e  f r a c t i o n s .  

The nmr data  confirm and amplify t h e  i n f r a r e d  da ta :  
present  from phenol ic  and carboxylic groups i n  t h e  coal and phenol groups added i n t o  
t h e  chemically combined phenol. The monoaromatic content (of f rac t ions  A and B 
especial ly)  i s  high, a l s o  because of  added phenol, bu t  d i - r ing  aromatic mater ia l  i s  
a l s o  present i n  a l l  f r a c t i o n s  (even t r ia romat ic  i n  C ) ,  which m u s t  have come from the 
o r i g i n a l  coal .  The a l i p h a t i c  mater ia l  observed i n  t h e  i n f r a r e d  spec t ra  of A, B 
and C i s  now seen t o  cons is t  p r i n c i p a l l y  of methylene br idges and s h o r t ,  branched 
a l i p h a t i c  chains (a and f3 - methyl predominate). 

This checks wel l  with t h e  dara  i n  Table 1 obtained by chemical analysis .  The 

I t  could be v i r t u a l l y  removed by deashing t h e  coal with 

e .g .  t h e  soluble  p a r t  of 

hydrogen bonded protons a r e  

DISCUSSION 

Combined phenol 

The t o t a l  combined phenol w a s  estimated as  follows: 

Using the y i e l d  and composition d a t a  of Table 1 elemental balances were drawn up, as 
i n  Table 3. The t h i r d  last l i n e  gives the  masses o f  t h e  various cons t i tuents  o f  
t h e  added mater ia l .  The second last l i n e  gives the  amount of phenol t h i s  would 
account f o r ,  assuming a l l  t h e  added oxygen w a s  from phenol (none from ethanol  o r  
methanol). The last l i n e  gives t h e  remainder, which is  close i n  composition t o  
benzene (which could be p r e s e n t a s  a contaminant i n  f r a c t i o n s  B and C). 
f rac t iona t ion  scheme shown i n  Figure 1 ethanol  contamination of any f rac t ion  i s  un- 
l i k e l y ,  but pentane contamination of  f rac t ion  A and methanol contamination of  D and 
E a re  possible .  We r e j e c t e d  these because pentane w a s  no t  picked up f r o m  f rac t ion  
A by hexane e l u t r i a t i o n  while preparing subfract ion A 1  ( t h i s  w a s  neg l ig ib le  i n  mass), 
and D w a s  too  d e f i c i e n t  i n  hydrogen and oxygen t o  contain any appreciable amaunt of 
methanol. 
so small t h a t  any such e f f e c t  would be negl ig ib le .  

Distr ibut ion o f  hydrogen on a phenol - and solvent-free b a s i s  

We can now determine t h e  d i s t r i b u t i o n  of  hydrogen i n  t h e  o r i g i n a l  coal ,  but  f i r s t  we 
have t o  estimate the hydrogen d i s t r i b u t i o n  i n  f r a c t i o n  D, which could not be deter-  
mined by nmr ana lys i s .  
r e s u l t s  of  t h e  hydrogenation of f r a c t i o n s  A t o  D i n  t e t r a l i n .  
low-hydrogen residue,  which still could not  be analysed by nmr, and a high-hydrogen 

' 

I n  the 

Methanol could have been present  i n  E ,  but  t h e  m a s s  of t h i s  f rac t ion  was 

In another paper presented t o  t h i s  Congress (15) we reported 
Fract ion D yielded a 
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l i q u i d  product separated by b o i l i n g  of f  excess t e t r a l i n .  From i t s  nmr analysis  and 
t h e  known amount o f  funct ional  group hydrogen i n  the  o r i g i n a l  f rac t ion  (0.05 g/100 g 
o r i g i n a l  coal)  we concluded t h a t  t h e  a l i p h a t i c  hydrogen i n  the o r i g i n a l  f rac t ion  w a s  
about 0.3 g/lOO g, and t h e  remaining 0.8 g of hydrogen/100 g was aromatic hydrogen 
of various kinds. 

In Table 4 t h e  r e s u l t s  of the  nmr analyses (Table Z), the  est imates  of combined 
phenol and contaminant benzene (Table 3), and t h e  above est imates  o f  the d i s t r i -  
but ion of hydrogen i n  f rac t ion  D a r e  manipulated t o  give a composite es t imate  of 
hydrogen i n  various forms i n  t h e  o r i g i n a l  coal  ( the  aromatic hydrogen i n  f r a c t i o n  D 
is assumed t o  follow t h e  same p a t t e r n  as i n  A,  B and C ,  and t h e  a l i p h a t i c  hydrogen 
is  a l s o  assumed t o  be d i s t r i b u t e d  as i n  A, B and C ) .  
by difference the hydrogen present  i n  various forms i n  t h e  or ig ina l  coal (second 
last l i n e  o f  Table 4 ) .  

Dis t r ibu t ion  of s t r u c t u r a l  types 

The d i s t r i b u t i o n  of  hydrogen ca lcu la ted  above, together  with the d i s t r i b u t i o n  of 
funct ional  group oxygen (Table l ) ,  between them define a s t a t i s t i c a l l y  probable 
s t r u c t u r e  f o r  Moxwell brown coal .  
i n  Table 5 estimates of the  numbers of carbon atoms associated with each type of 
hydrogen atom t h a t  not only pred ic t  approximately the  correct  mass o f  carbon p e r  
100 g of coal but  a l s o  allow f o r  approximately the  required number of s u b s t i t u e n t s  
i n  t h e  aromatic groups, and f o r  t h e  br idges connecting the  groups. There may, of 
course, a l so  be some carbon not associated with hydrogen, such as acyl br idges and 
t e r t i a r y  carbons i n  s i d e  chains ( see  l a t e r ) .  We note i n  passing t h a t  t h e  g r e a t e s t  
d i f f i c u l t y  i n  meeting the  above requirements i s  i n  accommodating t h e  oxygen not  ac- 
counted f o r  i n  funct ional  groups. 

We w i l l  conclude with a b r i c f  discussion o f  the  forms taken by t h e  three  main s t r u c -  
t u r a l  groups : oxygen groups, aromatic groups and a l i p h a t i c  groups. 

Oxygen groups: A s  seen from Table 1. 25% of the dry coal w a s  oxygen, 5% i n  t h e  form 
of phenolic groups, 5% carboxylic, and 3% carbonyl. The present  work throws l i t t l e  
l i g h t  on t h e  remaining 12%. 
confirm t h i s :  
reac t ion .  
i n f r a r e d  spec t ra  of res idues l e f t  a f t e r  the  reac t ion  of f rac t ions  C and D with 
t e t r a l i n  (15). 

Aromatics: 
t u r e s  (diphenyl, naphthalene and polynuclear) i s  noteworthy, and unexpected from 
previous s tud ies  on brown coal (16, 17). The t o t a l  aromatic content may have been 
overestimated s l i g h t l y  by the procedure used t o  es t imate  the  hydrogen d i s t r i b u t i o n  
of f rac t ion  D. but t h i s  would make l i t t l e  difference t o  t h e  contents  o f  the  higher  
aromatics. 

Aliphat ics :  
content (more than 25% of a l l  hydrogen), which again was not  expected from e a r l i e r  
models (16). 
similar t o  t h e  present one 12% of t h e  hydrogen in a l i g n i t e  was found t o  be i n  t h e  
form o f  methylene bridges. 
phenolation react ion (indeed Heredy's favored mechanism requires  t h e  p r i o r  presence 
of such br idges,  and the  large content found i n  t h i s  work appears t o  confirm h i s  
mechanism as  being the most important one i n  t h e  phenolation reac t ion) .  I f  t h e  
q u a n t i t i e s  i n  Table 5 are  ca lcu la ted  out i n  t e r n  of  the  numbers o f  s t r u c t u r e s  r a t h e r  
than t h e i r  masses, w e  ge t  0.45 mole of  aromatic groups per  100 g o f  coal  and 0.65 
mole of methylene bridges per  100 g. 
p e r  aromatic group, i . e .  a high degree of  crossl inking must be present ,  probably i n  

From t h i s  we can c a l c u l a t e  

Rather than attempt t o  draw a s t r u c t u r e  w e  give 

Some e thers  are thought t o  be present ,  but we cannot 
e thers  noted i n  f rac t ions  A and B could have come from the  phenolation 

There was some indica t ion  of  t h e  presence of benzofuran groups from the 

No doubt o ther  he te rocycl ic  oxygen i s  present  a l so .  

The presence of r e l a t i v e l y  large proport ions of higher  aromatic s t m c -  

The most  surpr i s ing  r e s u l t  o f  t h i s  work is the  high methylene br idge 

However it should be noted t h a t  i n  t h e  study by Heredy et  a l .  (5) 

I t  seems unl ikely t h a t  these bridges were formed by the 

This means t h a t  there  i s  more than one br idge 
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a three-dimensional network. 
present .  

Another s u r p r i s i n g  r e s u l t  is t h e  high number of  6-methyl and 8-methylene groups 
(0.23 mole/100 g coal) without corresponding a-methylenes (only 0.02 mole/100 g ) .  
This could be explained only by t h e  presence of tertiary butyl  groups (note  t h a t  
Swann e t  a l .  (18) recovered 2,6-di-t-butyl-4-methylphenol from a s i m i l a r  brown coal 
by evacuation a t  35OC). The mater ia l  reported here  as B-methyl occurred a t  6 = 1.2  
(Figure 3) ,  which Heredy e t  al .  (5) i n t e r p r e t  as 6-methylene groups i n  naphthenic 
r ings .  If they a r e  r i g h t  t h i s  would put  q u i t e  a d i f f e r e n t  complexion on t h i s  find- 
ing;  however t h e i r  i n t e r p r e t a t i o n  d i f f e r s  from those of o ther  a u t h o r i t i e s  (e.g. Ref. 
(19)) ,  and would r e q u i r e  a simultaneous occurrence of a-methylene groups, which i s  
n o t  borne out  by our Figure 3. 

Possibly dihydroanthracene s t r u c t u r e s  may a l s o  be 
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Solubi l ize  coal with phenol + e x t r a c t  with ethanol/benzene 

’ Soluble Inso lub 1 e 

p r e c i p i t a t e  

Figure l: 
and ?n insoluble  residue. 

The f rac t iona t ion  scheme used t o  separate  coal  i n t o  four  so luble  f rac t ions  

h- 
yield, g/lOOg 
o r i g i n a l  coal 

composi ti on, 
m a s s  % 

C 
H 
0 phenolic 
0 carboxyl ic  
0 carbonyl 
0 t o t a l  
ash 
unaccounted 

28 

76 
7 

4 
0 
ND 

17 
ND 
1 

f r a c t i o n  

7:l 69 

4 3 
1 

ND I Ni 
2 1  
2 
3 

i% 1 
4 

D 

28 

71  
4 

6 
2 

ND 
18 
3 
4 

E 

2 

56 
6 

ND 
ND 
ND 

24 
ND 
14 

Composite 

202 

72 
5 

(4) 
(2) 
ND 

18 

4 
(1) 

Whole 
Coal 

100 

6 3  
5 

5 
5 
3 

25 
4 
3 

Table 1: Yields and compositions o f  t h e  f r a c t i o n s .  NO means not determined. A s h  
contents  were not  determined on f rac t ions  A, B and E. which were l iqu ids .  
t i o n a l  group oxygen w a s  not  determined on f rac t ion  E because i n s u f f i c i e n t  of i t  w a s  
ava i lab le .  The f igures  i n  brackets  for t h e  composition o f  t h e  composite should be  
l i t t l e  affected.  

Fmc- 
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1 A 

D w 

Whole Coal 

4000 3000 2000 1600 1200 800 400 

Wavenumber, cm-l 

Figure 2 :  
by the fractionation scheme shown i n  Figure 1 .  
and whole coal ,  KBr d i s c .  

Infrared spectra  f o r  the o r i g i n a l  coal  and t h e  fract ions A t o  D separated 
Fractions A and B ,  thin f i l m ;  C ,  D 
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B 

C 

7 . 
1 ppm 7 5 3 6 =  9 

Figure  3: Nmr spectra for fractions A, B, C and E. 
A is dissnlvpd i n  rnrl, .  R r anrl c in ...-- :>--- J 
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~ 

6 
PPm 

> 8.0 
8.7-8.0 
8.0-7.2 
7.2-6.2 
5.8-4.3 
4.3-3.4 
3.4-3.2 
3.2-2.4 
2.4-2.0 

1.4-1.0 
1.0-0.6 

2.0-1.4 

f 
Composite 

proton type  

7 17 19 (0) 
0 0 6 (10) 
6 10 8 (48) 

63 58 44 (35) 
1 0 0 (0) 

0 0 0 (0) 
0 0 (0) 

3 1 0 (0) 

1 0 0 0 (0) 

4 9 17 &race) 

13 4 1 (4) 

hydrogen bonded 
t r ia romat ic  (5) 
two-ring aromatic (5) 
monoaromatic 
o l e f i n i c  
methylene b r i d g e  
a c e t y l i n i c  
methin, methylene a 
methyl a 
methylene B 
methyl 5 
a l i p h a t i c  y 

f rac t ion  un- t o t a l  
C H 0 ash accounted 

i 

___-- ~~ ~~~ 

added mater ia l  
added phenol 
remainder 

~ 

a2 6 12  - 2  4 102 
54 4 12  0 0 70 
28 2 0 -2 4 32 

27 
0 

13 
37 
0 
9 

t r a c e  
0 

15 
0 
0 
0 

Table 2: Dis t r ibu t ion  o f  protons by type i n  t h e  various f r a c t i o n s  as measured from 
nmr spectra .  Figures a r e  % of  the t o t a l  protons i n  t h e  p a r t i c u l a r  f rac t ion .  A l -  
lowance has been made for res idua l  protons i n  the deuterated so lvents  (CDC13 f o r  A, 
pyridene-d5 f o r  o thers ) .  The f igures  for  f rac t ion  D and t h e  whole coal a re  p u t  i n  
brackets t o  ind ica te  t h a t  these samples were barely soluble  and the  s p e c t r a  do not 
represent  the whole m a t e r i a l ,  only t h e  small soluble  p a r t .  a, 5, y r e f e r  t o  the  
pos i t ions  o f  these protons w i t h  respect  t o  aromatic r ings .  

21 2 5 0  0 28 
49 4 11 0 2 66 
54 4 16 1 3 78 
20 1 5 1  1 28 
1 0 0 0  1 2 

100 202 I 145 11 37 2 7 
o r ig ina l  coa l  63 5 25 4 3 
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t o t a l  

aromatic 
tri d i  mono 

phenol 
benzene 
coal  

a l i p h a t i c  
meth. a a B 5  
bridge CH, CH3 CH, CH3 

t o t a l  

0.12 1 . 2 3  
0.40 2.30 
0.31 1.72 
0.10 0.65) 
0.02 0.04 

0.95 5.94 

- 3.01 
- 2.46 

0.95 0.47 

0.95 5.94 

--- 
--- 

--- 

hydrogel 
bonded 

0.08 
0.36 
0.66 

(0.16 
0.01 

1.27 

- 
- 

1.27 

1.27 

0.14 
0.67 
0.74 

0.03 

1.63 

(0.05) 

0.74 

0.89 

1.63 

0.00 
0 .oo 
0.23 

(0.03 
0.00 

0.26 
- 
- 

0.26 

0.26 

(0.02 
0.00 
0.00 
0.00 
O . O b  

0.04) 
0.04 
0.16 
0.04 
0.02 

0.02 - 

0.02 

0.02 
- 

0.30 - 

0.30 

0.30 
- 

0.06 
0.04 
0.00 
0.02 
0.00 

0.12 
- 
- 
- 
- 

0.12 

0.12 
- 

0.25 
0.16 
0.04 
0.07) 
0.00 

0 . 5 2  
- 

- 
0.52 

0.52 

- 
t o t a l  

- 
1.94 
3.97 
3.86 
1.12 
0.12 

11.01 

3.75 
2.46 
4.80 

- 
- 

11.01 - 
Table 4: Hydrogen present  i n  var ious forms i n  f r a c t i o n s ,  o r i g i n a l  coal, combined 
phenol and benzene contaminant, g/100 g o r i g i n a l  dry coa l  ( f igures  i n  brackets  have 
involved making some assumptions about t h e  d i s t r i b u t i o n .  

~~~~~~~~ ~~ ~ 

hydrogen atomic mass H (Table 4) c .  
type I C/H C /H g/100 g coa l  g/100 g coa l  

monoaromatic 
two r ing  aromatic 
t r ia romat ic  
a methylene 
6 methylene 
methylene br idge 
a methyl 
5 methyl 
carboxyl 

36 
30 
39 
6 
6 
6 
4 
4 

1 2  

0.47 
0.95 
0.26 
0.02 
0.12 
1.27 
0.30 
0.52 

17 
28 
10 
0 
1 
8 
1 
2 
2 

t o t a l  I 69 

Table 5:  Calculat ion of carbon i n  various s t r u c t u r a l  forms, g/100 g dry coal. 
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